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A simplified formula for the calculation of the X-ray intensity diffracted by a monodimen-
sionally disordered structure. By G.Airecra, Istituto di Chimica Industriale del Politecnico, Piazza

Leonardo da Vinei 32, Milano, Italy

(Received 10 August 1960)

We have been recently concerned with the calculation
of the X-ray intensity diffracted by different models of
structures showing disorder with s=1 in the stacking of
layers. An example is severely ground « (Natta ef al,
1958) or y (Natta et al., 1959) TiCl;. In the course of
our study, we have found a simplified formula for the
calculation of the mean intensity diffracted by a single
layer.
Mean diffracted intensity is given by:
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where:

r is the different layers;
f® is the frequency of occurrence of the layer of
sth kind;

V@) is the structure factor of the layer of ith kind;
Qx is the matrix whose (¢, ) element is given by the
product P exp [ —ig\y’], P’ being the probability
for a layer of the kind % to be followed by a Kth
neighbour of the kind j, and exp [—¢%¥] the
corresponding fringe factor.
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According to Hendricks & Teller (1942), (1) reduces to:
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where Q) are the eigenvalues of Q,, reduced to diagonal
form by the similarity operation 0Q,0, and R are
the diagonal elements of the matrix OVFO-!, with
V@) = VAV * and FG) =§(i5)f(i),

It may be possible that the matrix Q, cannot be
diagonalized, if its eigenvalues are not all different and
if Q, is not symmetrical.

A new formula for I 4y, subjected to no conditions of
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the above type, and simpler than (2), may be derived
from (1) in the following way.
Let V be the row vector:

V). .. V)., V@O

and V the corresponding column vector. Remembering
that Q, =QZX, (1) reduces to:
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But (QX)G@), in the limit of K — oo, is generally
vanishing in whatever statistical structure. Then (3)
reduces to:
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The only lengthy step in the calculation of I 4y through
(4) is the evaluation of (E —Q;)~'; whereas the calcula-
tion of I 4y through (2) requires the diagonalization of Q,,
which is not always possible, and the lengthy evaluation
of O, O, OVFO-.

I wish to thank Prof. G. Natta for the encouragement
he has given me in this study.

References

HENDRICKS, S. & TELLER, E. (1942). J. Chem. Phys. 10,
147.

Natra, G., Corrapini, P., Bassi, I. W. & Porgri, L.
(1958). Rend. Acc. Naz. Linc. 24, 121.

NatTa, G., CorraDINI, P. & ALLEGRA, G. (1959). Rend.
Acc. Naz. Linc. 26, 155.

Neutron diffraction by helical spin structures. By W. C. KoErLER, Oak Ridge National Laboratory, Oak

Ridge, Tennessee, U.S. A.

(Received 17 August 1960)

Recently a new class of magnetic structures, the hel-
ical spin structures, has been discussed theoretically
(Yoshimori, 1959; Villain, 1959), and a number of ex-
perimental examples, for instance in MnAu, (Herpin et al.,
1959) and in metallic holmium (Koehler et al., 1960)
has been discovered in neutron diffraction experiments.
A simple helical structure may be described as follows:
let the ideal lattice sites of the chemical unit cell be
described by ry+Ar and let us suppose that at each

such lattice site is found a magnetic moment uKf such

that all moments make the same constant projection on
some crystal direction defined by the unit vector %j;
that is to say, the moment directions are assumed to be

iven b -
given by K[ =cos pti, +sin pif, (1)

where 4} is a unit vector normal to %; and B is the
constant angle between the moment directions and ,.
It is further assumed that the directions 4 are described

b
Vo 4L =[(h, —if1,)/2 exp i2nT. (rp +AL) +C.C]  (2)
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in which T is & reciprocal lattice vector normal to planes
of parallel moments and which defines the screw axis
of the structure. The direction %, may be called the axis
of moment rotation, %, and @, are unit vectors in the
plane normal to ;.

It is the purpose of this note to point out that the
intensity formulae necessary for the interpretation of
neutron diffraction data for such helical type structures
may be simply derived by the application of the general
theory of X-ray diffraction in disordered lattices as given
by Zachariasen (1945).

We shall use Zachariasen’s notation throughout, and
for completeness reproduce here a few of his fundamental
definitions, noting first of all that the magnetic scattering
amplitude, a vector, to be associated with the lattice
site ry + Ay, may be written

paf=pl(s.Kb)s—KL], (3)

where p is as usual (e?y/2mc®)ufm in which f,, is the
magnetic form factor and all other symbols have their
customary significance and where § is the unit scattering
vector. We define a mean amplitude for the set k& by

Sk = l/N%‘ paf 4)
and a fluctuation, or disorder, for the site ry+AL by

o =pqf —gi . (5)

It will be noted that the disorders 9L are doubly periodic
corresponding to the supposition that there exist planes
normal to T in which the moments are parallel. Since
the mean value of the disorder of the set & must vanish
we shall assume for the balance of this discussion that

N3 4k=0. (6)
L

This condition obviously fails if T=2aBy but such a
case is of no interest here. We have then the relations

8k =p cos B[(8.4)8 — i), @f =p sin Bl(§.4F)5 4.  (7)

The intensity of scattering from a small disordered
crystallite is (Zachariasen’s equations 4-203 and 4-204)
I=J,+J,

Jy=[F|2 3 exp is. (AL —Ar)
L, L
Jo= Fexpis.(AL—Ar) 3 olzV expis.(te—1x),  (8)
L, L kk’
where

Pieke =1/N_L>; PF . (@pH)*

is the mean value of the products of the disorders at
sites separated by ry —ris +Apr

The mean structure factor F becomes, if Fz is the
structure factor of the unit cell with origin at A

F=1/N3Fr=_23 g; exp is.rx (9)
L k

and J; of equation (8) above is
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J1=p? cos? B sin® @|R!? [T sin? §s. N;ayjsin? §s.a;  (10)
i

in which O is the angle between the scattering vector
and the spin rotation axis %, and

R=_3expi2nBy.1y
R

may be termed the geometrical structure factor of the
chemical unit cell. It is clear that J,, having its maxima
in the exact Laue-Bragg directions for which s =2xBj.
corresponds to the usual case of scattering by a ferro-
magnetic material.

The disorder scattering J, depends upon the quantities
@3l . which for this case take the simple form

oM. =1p? sin? (1 + cos? ©) [exp 27T, (ry — Ty +Apm)+C.C.]
(11)
from which
J o =1p?% sin? §(1 +cos? )
x X

L Lk

exp i(S + 27!1') AT —Tr + AL —AL')
+exp (s —2aT). (rx — T + AL~ Aprs) .
The first double sum on L, L’ vanishes unless s + 27t =
2By, the second unless s —2nt=27By, the sums over

kk’ become simply

| S exp i2aBy.1Ti|2 =|R|?
P

and the disorder scattering J, reduces to

sin? %(S i27t1).N5ai
sin? }(s + 271). a;
(12)

JF =1p?sin? B(1 +cos? O)R|2 IT
i

The disorder scattering thus manifests itself in two
equally spaced satellites of the allowed nuclear reflections
which are found on reciprocal lattice rows parallel to .
Tt is noteworthy that there are no angles ® for which
the satellite intensities vanish which fact provides a
(negative) test for the helical structure. The magnitude
of T gives, obviously, a measure of the interplanar turn
angle.

If the fluctuations ¢f and the quantities @, may be
expanded in Fourier series then more general types of
magnetic structures are amenable to interpretation by
expressions analogous to Zachariasen’s equations 4-214
and 4-215.
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